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Universal non-Gaussian velocity distribution in violent gravitational processes
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We study the velocity distribution in spherical collapses and cluster-pair collisions by i®ady simu-
lations. Reflecting the violent gravitational processes, the velocity distribution of the resultant quasistationary
state generally becomes non-Gaussian. Through the strong mixing of the violent process, there appears a
universal non-Gaussian velocity distribution, which is a demockaiigial-weighteg superposition of many
Gaussian distributiondDT distribution). This is deeply related with the local virial equilibrium and the linear
mass-temperature relation which characterize the system. We show the robustness of this distribution function
against various initial conditions which leads to the violent gravitational process. The DT distribution has a
positive correlation with the energy fluctuation of the system. On the other hand, the coherent motion such as
the radial motion in the spherical collapse and the rotation with the angular momentum suppress the appear-
ance of the DT distribution.
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[. INTRODUCTION of all bound particles becomes non-Gaussj@h which is
) ) ) described by the superposed-Gaussian.

Galaxies and clusters of galaxies are typical structures prom g viewpoint of statistical mechanics, we cannot na-
formed through the gravity of their own. We would like t0 jyely expect the ordinary Gaussian distributions for SGS,
understand the history and universal characterization of thesg.cause the the long-range interaction of gravity apparently
self-gravitating structures. Especially, we are interested iRjp|ates additivity which is the basic standpoint of the ordi-
how extensively the formation process of them are involvednary Boltzmann statistical mechanids]. Then the question
in the resultant universal structure through their gravitationalg \whether we can expect any universal distribution function
interaction. In these structure formation of self-gravitatingso, SGS instead of the Gaussian distribution.
systemg(SGS, a cold collapse and a clusterjpair_ collision As one of the possible explanations for these non-
would be the fundamental processgherefore in this paper, Gayssian distributions in the stationary state with large fluc-
we would like to focus on such fundamental dynamics disations of intensive quantities such as temperature, Beck
regarding the other nongravity factors. _ _and Cohen[12] proposed the superstatistics. According to

The cold collapsing process has been extensively studiegis proposal, statistical properties of the temperature fluc-
as a crucial relaxation process of the collisionless systemg,aiions determine overall non-Gaussian distributions. A spe-
such as elliptical galaxies where the stellar encounters arg| choice of the fluctuation leads to the Tsallis statistics
unimportant. After the violent cold collapse, a steady state i 13].
generally formed, whose density profile is well described by However, it is clear that the non-Gaussian properties of
the de Vauc_oulgurs’sl’“ law [1-9]. The spherical averaged gGs arenot always observeeverywhere in the Universe.
density profile is found to b@“r: '”_fPhe”Ca' cold col-  moreover non-Gaussian properties of SGS are quite diverse
lapseg[2,6] and is found to beor™=—r"in the cluster-pair j, general and we cannot expect the completely universal
collision [7]. The energy distribution is further discussed in properties of SGS. For example, we studied non-Gaussian
Ref. [8]. On the other hand, the velocity distribution has ”Otproperties in the self-gravitating ring modgl4], where
yet been extensively studied except for the anisotropy of theyany self-gravitating particles are constrained to move on a
velocity dispersion[10]. Recently, Merrallet al. have nu-  ¢jreylar ring, which is fixed in the three-dimensional space.
merically showed that the radial velocity distribution in the Only at the intermediate energy scale where the specific heat
central region of the bound particles becomes Gau§3ign  pecomes negative, only tHealo particles which belong to
After the spherical collapse and the cluster-pair collisionihe intermediate energy scale, have shown non-Gaussian and
Kanaeda and Morikawa showed that the velocity distributiorbower law velocity distributionf(v) = v~2. In this model, the

existence of théhalo particles plays an essential role in the
appearance of non-Gaussian distributions. In our present pa-
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than the later collisional stage of SGtS>t,.), wheret, is a TABLE |I. Initial condition for spherical collapse cash. is a
local two-body relaxation timgl5] [In this papert, is de- ~ number of particles ani@K /W is an initial virial ratio andp = r~2is
fined by Eq.(2).] This is because in the former stage, thean initial density profile and is a cutoff parameter in Ed1).

system is not thermally relaxed and the local equilibrium is

not yet established. A long range dynamical correlation Run N |2K/W pocr @ €
among the whole system develops though the long range sc 5000 0 0 8
interaction. This property would yield nonadditivity of the
system and manifest deviation from the ordinary Gaussian SCN1 10000 0 0 2
distributions. On the other hand, in the later stage, the local SCN2 50000 0 0 2
equilibrium is established through two-body encounters and SCV1 5000 01 0 ?
the situation is similar to the ordinary statistical mechanics SCV2 5000 0.2 0 il
which admits Gaussian distributions. Thus we would like to  scv3 5000 0.3 0 e
concentrate on theol_lisionless stage of S_GB t_his paper. sScv4 5000 0.4 0 8

In Sec. II, we begin our study with typ|cal s!rr_]ulatlons f(_)r scvs 5000 05 0 £
spherical cold collapses and cluster-pair collisions. We find SCV6 5000 1.0 0 5
the same form of non-Gaussian velocity distribution in both '
cases, and then we explore four different models of the SCAL 5000 0 05 2z
superposed-Gaussian distributions to describe this velocity SCA2 5000 0 1.0 2
distribution. In Sec. Ill, by analyzing the numerical data we SCA3 5000 0 15 2
show that the non-Gaussian velocity distribution observed in  SCA4 5000 0 2.0 i
our simulation are well described by the “Democratic Tem- scci 5000 0 0 o
perature(DT) distribution.” This DT distribution is consis- sce2 5000 0 0 -5
tent with the fact that we observe the linear relation between sce3 5000 0 0 0
the temperature and the inner mass. In Sec. IV, we study the scs1 5000 0a 0 8
universality of this DT distribution and show that the mixing )

SCS2 5000 0% 0 28

property under the violent gravitational process is the es-
sence for the appearance of the DT distribution. The effect of SCS3 5000 1% 0
coherent motion in the velocity distribution is discussed inarpe inetic energy is contributed by only the rigid rotation around
Sec. V. The last Sec. VI is devoted to the discussions ang,e ; axis.

further developments of the present work.

%

cially we consider two fundamental processes of violent
gravitational dynamics; a spherical cold collapse and a
cluster-pair collision.

II. THE VELOCITY DISTRIBUTIONS IN  N-BODY
SIMULATION

A self-gravitatingN-body system is described by the fol-
lowing Hamiltonian: A. Spherical cold collapse process

N o N 2 We first glance at a typical example of a spherical cold
H=> P _ > _ Gm (1) collapse procesgun SC in Table ). All particles are homo-
2m S -rpP e geneously distributed within a sphere of radRisThe sys-

i . tem is composed dfi=5000 particles and we set the vanish-
wherer; andp; are, respectively, the position and the mo-jng yirial ratio |2K/W=0 initially, where K and W are the

mentum of theith particle,m is the mass of each particle, yinetic energy and the potential energy of the whole system,
and G is the gravitational constant. For numerical S'mUIa'respectiver.

tions, we must introduce a cutoff parametdfor the units of
length, mass, and time, we use the initial system Bizéhe
total mass M:=Nm, and the initial free-fall time t¢

:= {R®/(GM), respectively. The local two-body relaxation
time t,o in this simulation can be written in the following
form:

- 0.065(r) @

1 G2p(r)min(l/e)’
where o(r) is a velocity dispersion angd(r) is a mass den-
sity. We use a leap-frog symplectic integrator on GRAPE-5,
a special-purpose computer designed to accelavabedy 0
simulationg[16]. In all runs, the numerical errors in the total
energy|AE/Ey| have been controlled to be less than®10 FIG. 1. A snapshot of a spherical cold collapse qa@ga SC in

In this section, we focus on the velocity distribution in the Table |): top left (t=0), top right (t=1t;;), bottom left(t=5t;;), and

violent gravitational process biX-body simulation. Espe- bottom right(t=100¢).
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FIG. 2. A velocity distribution of a spherical cold collapgen
SC in Table )} at t=10t. Three best-fitted Gaussian distributions
are superposed. Gaugll) is fitted by use of the all data. Gauss
(small) and Gausslarge are fitted by use of data included for only
small velocity and only large velocity, respectively.

FIG. 3. (Color onling A snapshot of a cluster collision model
(run CC in Table 1y, top left (t=0), top right (t=5t;), bottom left
(t=20t), and bottom righ(t=500;).

Figure 1 shows snapshots of particle distributions at dif-
ferent times. Most particles rapidly collapse into the centei@n equal number of particles and all particles are homoge-
within the free-fall timet ~ t;;. After this collapse, some par- neously distributed in each sphere of radRsThe initial
ticles obtain positive energy and escape from the system, ancglocity distribution is set to be Gaussian and the initial
the rest particles remain bounded and gradually expand leavirial ratio is 1. We set the initial separation of the pair ® 6
ing a tight core at the center. This is a typical process of th&long thex axis.
formation of the core-halo structure for SGS. Figure 3 shows the snapshots of particle distributions for
We now focus on the velocity distributions of the par-the run CC at different times. The cluster-pair collides at
ticles. Since we are interested in the global property, we extime t~20t;; and then gradually merges into a single cluster.
tract the one-dimensional velocity distribution function com- The velocity distribution profile after this merging is shown
bining all-directional components of velocity distributions. in Fig. 4. The velocity distribution profile is very similar to
We will examine the anisotropy in the velocity distribution in the previous spherical collapse casen SO. The excess of
Sec. V. The velocity distribution thus obtained is shown forvelocity distribution at the small value is prominent as be-
bound particles, which have negative energy, in Fig. 2. Thigore.
velocity distribution is apparently different from the ordinary  In both cases, we notice that the temperature or the veloc-
Gaussian distribution, especially in the small velocity region.ty dispersion is different from place to place; the center of
There is an apparent cusp at the center. This velocity distrithe core is much hotter than the outskirts of the system.
bution has been stably observed just after the collapse duringherefore it is clear from the beginning that the obtained
the whole simulation timét~ t;;— 1000;;). We emphasize Velocity distribution cannot be fitted by a single Gaussian
that this non-Gaussian velocity distribution is quite universalistribution. Thus we propose to describe these systems by
and robust in various cold collapsing processes, as we willhe superposition of Gaussian distributions with various tem-
demonstrate briefly. peratures. This consideration is very natural because the col-
lisionless SGS allows the coexistence of many temperatures.
This is becauséa) the collisionless SGS is not yet thermally
B. Cluster-pair collision process relaxed, andb) the virial relation implies that the system

We turn our attention to another case of the violent gravi-ShOWS negative specific heat, which spontaneously yields in-

tational process: The cluster-pair collision. Because W@Omog::eer(;lljsshen;?eégitﬁéi' of Gaussian velocity distribution
would like to clarify the basic process, we choose the sim- 9 » SUPETP y

plest head-on collisiotrun CC in Table I}. Each cluster has fse(vi) has the form

TABLE IlI. Initial condition for cluster collision casel is the

total number of particles and the number of particles in each cluster 0 i
is N/2. |2K/W] is an initial virial ratio of each cluster where the
kinetic energyK is contributed by only the random motidK,,; is a 05 4
kinetic energy by only the rotation with an orbital angular moment B
around thez axis (L) initially. 31 data o .
_§° Gauss (all) —
| Gauss (small) --- _
Run N 12K/ W] |2K o/ W] (L) LS v large)
ccC 5000 1 0 20 01 02 o|.3v0|.4 05 06 07
CCL1 5000 1 0.1
CCL2 5000 1 0.2 FIG. 4. Same as Fig. 2, but for a cluster-pair collision model

(run CC in Table 1) at t=500Q;;.
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M 1 2 ’ on
fslv) = A f Y ——
0 V27 T(M') 05F %
dM 1 25t E -1
dTr | — e—vi/2T , 3 S
f dT’ | V2=T’ 3 3.

-
in

whereA is a normalization constant. The parameter function
M can be any function of temperature. However now in the
present spherical symmetric case, we can choose it to be the -25
inner massM, := [op(r’)4ar'2dr’. This choice is not at all
trivial and will be demonstrated briefly. Any special choice  FIG. 5. Alinear-log plot for velocity distribution for the case of
of the weight function for the superposition yields in generala spherical cold collapsgun SQ att=10t;. The best-fit Gaussian
arbitrary distribution functions. In order to avoid such arbi- and the four superposed-Gaussian mg#ejs.(4)<7)] with a best-
trariness, we will choose the simplest weight functions. Herdit parameter are superposed. Tke of each model is 0.000 95
we consider four natural models of the superposed-Gaussidfaus$, 0.000 37(DT), 0.000 48(GT), 0.0016(Do), and 0.0025
distribution. (Go). The best-fit model is a DT distribution.

(1) Model 1. (GT) Gaussian-weighted superposition of

Gaussian distributions with various temperatures. The tem- o 1 v2
istribution i feolvi,y) = f do— oy ex ——exp - =5

o

perature distribution is the Gaussian with the dispersion

and GT distributionfg(v;, 7) takes the following form: v2my 27 \2mo 2
Ko(lvil
T2 1 vz :M, (6)
fGT(U“T) f dT 2—eX 2 > TeX 2_II_ 277”)/
T
vent vem whereK(z) is the modified Bessel function.
1 | A4 gFH(1/2,314;-vi1(327)) (4) Model 4 (Do) Equal-weighted superposition of
T omr 23/4 Gaussian distributions with various standard deviatian
- Sincedo/dM=const, Dr distributionfy,(v;) has the follow-
~\27lvi|oF (3/4,5/4;~v{'1(327)) ing form:
2 4
v?I'(3/4)oF 5(5/4,3/2; ] /(3217))} 1C 1 .,
174 174 .4 foo(01) f do’ ovAi20'?)
2 Tl D o 0 \“"2’77'0"
where  T'(x) is a gamma function and I‘(O,vf/(202))
oFo(@r,-..apB1, ... Bqi2) is the generalized hypergeo- :—Z\E'Zm , (7)

metric function.
(2) Model 2. (DT) Equal-weighted superposition of wherel'(z,p) is the incomplete gamma function.

Gaussian distributions with various temperatures. This case In the next section, we examine the above four models in

corresponds tadT/dM=const in terms of the parameter relation with our non-Gaussian velocity distributions.

function M, and we call the velocity distribution in this case

s “democratic temperature distributiofy+(v;),
IIl. DEMOCRATIC TEMPERATURE (DT) DISTRIBUTION

_1 ! S S 221" As shown in the preceding section, the velocity distribu-
fDT(vi) = dT € i . . .
T 27T tion functions for both processes, spherical cold collapses
2L 2T gofiem lvild 1 - Erf(ﬂ) , %5 sy
T T V2T

C

=
n

where Erfx) is the error function,

. ’oglof(v) .
-

=
n

2 X
Erf(x) = = | dte™.

VmJo

2 T N N I I I N

. . . 0 01 02 03,04 05 0.6 0.7
(3) Model 3. (Go) Gaussian-weighted superposition of Y
Gaussian distributions with various standard deviatiens FIG. 6. Same as Fig. 5, but for a cluster-pair collision model
:=\T. The distribution of the standard deviation is the (run CQ at t=500;. The x? of each model is 0.0030Gauss,

Gaussian with the dispersion?, and Gr distribution  0.0021(DT), 0.0030(GT), 0.010(Do), and 0.015Go). The best-
feo(vi,y) takes the following form: fit model is a DT distribution.
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0.005 ’ MriMp
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_ S FIG. 9. A mass dependence of velocity dispergi@i(M,))) for
FlG 7. A ||near-|og plOt for a Ve|0C|ty d|Str|bUt|0n Of .eaCh She” the case of a Spherica| Cold C0||agsan SQ The mass is normal_
for the case of a spherical cold collapgen SQ. We divided the  jzed by the mass of whole bound partichdg. The velocity disper-

whole bound particles into 10 shells including an equal mass andjon is time averaged and the error bar is calculated from the time
calculated the velocity distribution by use of the data fram fyctuation.

=l(lff andt:2(1ff.
in the inner region gradually reduces in time, while it re-
and cluster-pair collisions, take the same non-Gaussian fornmains constant in the outer region. Since the mass density at
Using the most natural four models of superposed-Gaussidiie inner region increases in time and eventually the effect of
distributions, we try to fit our velocity distribution function two-body relaxation turns on, such a tilt of the temperature
and to extract any universal character of SGS. gradient is thought to be caused by this collisional effect. A
The fitting results are shown in Figs. 5 and 6. Using the careful check of our numerical simulation supports this in-
analysis, the best-fit model turns out to be the DT distributerpretation. Therefore, the linearity of the temperature gra-
tion in both cases. dient is thought to be the property of the collisionless SGS.
In order to investigate the structure of velocity space forFurther collisional effect would eventually yield the uniform
bound particles in detail, we divide the whole particles intotemperature distributions. S
several shells with equal number of particles. We introduce 1he almost Gaussian velocity distribution in each shell
the inner mass coordinati!, := 4m[idr’ r'2p(r') and con- ~guarantees the form of Eq3) and the linearity of the
sider the averaged quantities within each shell as local varfémperature-mass refation leads to the relatjdm/dT]
ables. =const in Eq(3), which indicates the DT distribution for the
The velocity distribution of each shell shows almost Velocity distributions. This is perfectly consistent with the
Gaussiar(Figs. 7 and & These figures show that each shell result that the DT distribution is the best fit to the velocity
has a different temperature and suggest that the previofiistribution among several models which we examined.
non-Gaussian distribution can be described by the superpo- Besides tLus linearity in the diagram of the local velocity
sition of Gaussians with various temperatures. The temperalispersion(v®) and the inner masbl;, we observe another
ture is the highest at the most inner shell and monotonicallprominent fact that the virial relation between the potential
decreases toward outside shells. energy and kinetic energy holdscally at each spatial re-
The local velocity dispersiorv?) is plotted against the gion. Using the local kinetic enerdy; and the local potential
inner massM, in Figs. 9 and 10. In both cases, it is remark- €N€rgyW; inside the radius, we can locally define the virial
able that the velocity dispersion decreases linearly in the intatio [2K,/W|. The time evolution of this local virial ratio is
ner massM,. We emphasize here that this linear relation isdepicted in Figs. 11 and 12. The value of the local virial ratio
quite robust and universal. Actually this relation is observedPt@ys almost unity within the error £10% everywhere any-
in our two processes with wide range class of initial condi-ime- This suggests that not only the whole system but also

tions, which will be further discussed in the subsequent sec2ach shell is locally virialized. This fact may be deeply re-
tions. If we carefully look at Fig. 9, the temperature gradient'ated with the robustness of the DT distribution, and will be

separately discussed in R¢1L8].

0<Mr/M<1 — In order to examine the stability of DT distribution, we
MM <s calculate the time evolution of the? value for DT(x3;) and
6<MM<T -

% 8<Mp/M<9 ~m 0.25] ¥ — 1T 1T 1T 1T T T T 1
01 \ o * 8 500ty <i<600ty o
9. té 800!”<t<900:ﬁ e
0.0 6@ 900ty <t <1000ty o
B 0.1 . .
=
s g
v

0 05 1 15,2 25 3 35

04 05 06 07
MriMp

FIG. 8. Same as Fig. 7, but for a cluster-pair collisijoom CO.
We calculated the velocity distribution by use of the data from FIG. 10. Same as Fig. 9, but for a cluster-pair collisionn
=500 andt=510s. CO).
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FIG. 11. The local virial relation for run SC. The raf@K,/W,|
is plotted as a function oM,. The virial ratios of each shell at
different times(t=5t;, 10, 507, and 100) are superposed.

FIG. 13. Time evolution of3; of DT distribution andy,ss0f
Gaussian for the case of a spherical cold collajpse SQO.

- TR o ; P— As the indicator for the degree of violence of the process
Gaussian distribution§¢2....), which is depicted in Figs. 13 i . : '
Soausd b 9 e use the total energy fluctuation of particles; more violent

and 14. Immediately after the collapse or the merging, th he process the more rapid the energy mixing of each par-
velocity distribution always becomes the DT distribution icles. More preciselv. the enerav fluctuation of it bar-
during the whole period of our simulations. This robustness{ : P Y 9y P

makes DT distribution one of the most characteristic proper-ICIe is defined as

ties of collisionless SGS. _—
T = Vef(t) —&(H)?, (8)
IV. UNIVERSALITY OF DT DISTRIBUTION—DEGREE OF whereg(t) is the energy ofth particle at timet and*_is the
VIOLENCE time averaged value efduring the whole simulation period.

Then we define the total energy fluctuation of the system as

As we have seen in the preceding section, DT distribution .
the sum ofo; for all particles as

supported from the lineafv?)—M, relation, is one of the
most relevant characteristics of SGS such as the spherical N
cold collapses and cluster-pair collisions. We would like to \E = oo 9)
further clarify the condition for the appearance of the DT = o
distribution function. From the beginning of our numerical N
experiments, we have implicitly chosen the violent processes In order to check the efficiency ofAE* as the indicator
such as cold collapse and the quiet cluster-pair collision. W@f the degree of violence, we calculate the correlations with
had in mind the expectation that the strong mixing propertyother physical quantities which are naturally expected to be
associated with the violent gravitational process would yieldconnected with the strength of the mixing. When violent
the most prominent characteristics for the collisionless SGSNixing in the phase space occurs, some of the particles ob-
Actually it is well known that a violent mixing becomes an tain enough energy to escape from the system through the
important factor to realize the quasiequilibrium virialized €nergy exchange by the potential oscillation. Then the rest of
state[17]. the particles becomes more tightly bounded due to the ex-
In this section, we will quantitatively demonstrate this traction of energy by the escaping particles. Therefore, both
expectation. Especially we would like to explore the corre-(8) the system size ancb) the total energy of the bound
lation between the DT distribution and the degree of violencdarticles, E,(<0), will become smaller after the collapse,
of the processes. provided the mixing is strong and effective. As the quantita-
We control the degree of violence of the process by thdive indicator for (@), i.e., the size of the system after the
choice of initial conditions in our numerical experiments. collapse, we introduce the half mass-radius divided by it's
The initial conditions of all runs are listed in Table | for initial value,R,, Further, we need to take ensemble average

spherical collapses and Table Il for cluster-pair collisions. (*) of all those quantities for the regular continuous indicator
for the process.

-
P

12Kr/ Wrl
-

4
i

02 04 o 0.6 08

FIG. 12. Same as Fig. 11, but for a cluster-pair collisijorm
CCO). The virial ratios of each shell at different timés=100Q;;, FIG. 14. Same as Fig. 13, but for a cluster-pair collisijoum
20Q¢, 504, and 1006;) are superposed. CO).
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FIG. 17. Same as Fig. 16, but faf;.
FIG. 15. The half-mass radius normalized by it’s initial value at

t=0, Ry, and the absolute value of the total energy of bound par- . . . .
ticles, |E,| are plotted againstAE? for all cases in Table | and manifestly support our expectation that the DT velocity dis

Table Il. We take the ensemble average for each data with sever‘tflIbutlon is associated with the strength of the violent mix-

times. It ranges fronmh=10t; to t=10Q4; with 10ts; intervals in the . .
spherical case, and frow 10Q; andt=100G with 100 inter- From these results, we can claim that the DT velocity

vals in cluster collisions. The error bar is calculated from the en-distribution function is universal for various initial condi-
tions provided that the violent gravitational process is in-
cluded. Moreover, the DT distribution becomes more promi-
nent for stronger violent processes.

semble average.

As in shown in Fig. 15{VAE?) is apparently correlated
with both (R,,,y and (E,). This fact supports that the total
energy fluctuatioré\fﬁ) is actually an effective indicator of
the degree of strength of the mixing.

Keeping in mind thatyVAE?) is a good indicator of the
violence of the process, we now examine the correlation be- We have so far studied the universality of DT distribution
tween the degree of violence in the initial stage and the ocand its correlation with the degree of violence of the dynami-
currence of the DT distribution for bound particles in the cal process. Here in this section, we further discuss another
quasiequilibrium stage. We calculatgd values for the fit-  aspect of universality of DT distribution function.
ting of velocity distributions with DT distribution and Gauss-  In the above argument, we have neglected possible aniso-
ian distribution for all runs. The result is shown in Fig. 16, tropy in the velocity space; we have extracted one-
where the ratio of3; of DT distribution t0x2,uss0f Gauss-  dimensional velocity data set by simply combining all the
ian distribution is plotted againgt/AE?) for all initial con-  velocity components. However actually in the processes of
ditions. The value is greater than 1 for the simulations withspherical collapse and cluster-pair collision, the velocity
small value of(VAE?), which means that the velocity distri- Space is anisotropic in general. Further the anisotropy in the
bution is better fitted by Gaussian rather than DT distriburotating collapsgruns SCS1-3 in Table) lis apparent.
tion. On the other hand, for the larger values{0AE?), the For example, we first consider the spherical cold collapse
data is better fitted by DT distribution rather than Gaussian(fun SO. Figure 18 shows the measure of val|d|t)£ of DT
Thus DT velocity distribution is always favorable in the distribution, i.e., the time evolution offy divided by XGayss
simulation with violent processes. The radl_al velqcny distribution is bettgr fitted b_y G_aussmn

This point is further clarified in Fig. 17, where we plotted for @ while untilt~50i; and after that time DT distribution
the value OfXZDT against(v‘ﬁ}. It is apparent that thquT bgcqmes bgtter. On the other hand, the_ ta.ngelntlal vglocny
monotonically decreases for increasinﬁ. These results dlstrlbutl_on is _always. well fitted by DT distribution during

all our simulation period.

This behavior will be related to the coherent motion of the
particles. More precisely, in the early stage of the evolution,
there exists a coherent radial motion such as a collapse and a

V. UNIVERSALITY OF DT DISTRIBUTION—DEGREE OF
COHERENCE
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spherical collapse case, frotw 100 andt=100G;; at 10Q¢+ in-
tervals for the cluster collision case. The error bar is calculated from FIG. 18. Time evolution ofy3; of DT distribution divided by
the time fluctuation. the x2,,ssf0r the case of a spherical cold collapsen SO.
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- exists then it could inherit special initial condition and could
38 - suppress any intrinsic properties such as DT distribution for
N ,{(ﬂ‘.‘ I SGS This coherent motion actually exists in the radial ve-
W N locity distribution in the spherical collapse processes, and in
the rotational velocity distribution in the processes with non-
vanishing angular momentum.

As a conclusion, we postulate thboth the local virial
relation and DT velocity distribution, associated with the lin-
ear temperature-mass relation, are universal properties of
FIG. 19. Same as Fig. 18, but for the case of a spherical collapsgefh;vrgﬁgigngfeiﬁg \leoe\?et %ﬁxg?;gnslrorggmgs should be
with the angular momenturh, (run SCS2. f . . . :

urther investigated. One possible candidate would be a

steady heat flow from the center toward outskirts of the
subsequent bounce, which eventually decays. This coheregpherical system. In our calculation, the two-body relaxation
motion does not affect the tangential VelOCity distribution. rocess is initiated at the very center of the core region,
Moreover, this coherent motion may inherit some amounts Ofyithin our numerical calculation period. Release of the
randomness in the initial distribution of partiCIeS. Therefore,gravitationa| energy at the center would y|e|d a Steady heat
in the early stage, only the radial velocity component isfiow toward the outskirts of the system. This flow may guar-
dominated by the coherent motion with this initial Spatlally antee the two properties we found in th|s paper and their
random diStl‘ibution, and eVentUa“y recovers the intrinsic DTduration_ We hope we can report the deta" Very soon.
distribution when the coherent motion decays. In this paper, we paid attention only to the velocity distri-

The above consideration is also applicable for the anisopytion function. However, we need the information of matter
tropy in the rotating collaps@uns SCS1-3 in Table)lFig-  configuration like density profile to understand the full char-
ure 19 shows the measure of Val|d|ty of DT d|5tr|but|0n, |.e.,acteristic Of gravitationa”y bound Systems in quasiequilib_
the time evolution of¢3; divided by x&,,s<in this case. Only  rium state. We will show that the combination of the local
thev, component shows DT distribution all the time, and theyjrial condition and the linear mass-temperature relation
vx,Uy components, the direction of coherent rotation, nevefeads to a universal density profile for gravitationally bound
show DT distribution during our simulation time. systems in a separate repétt8]. This information should

Therefore the condition for the appearance of the univergiyve a hint for the origin of the universality profile of dark
sal DT distribution would be, besides the violence of thematter or e|||pt|ca| ga|axies like de Vaucouleurs |M
system, the decay of the coherent motion, which keeps the |n our previous work[14], we have studied the self-
information of initial conditions. gravitating ring model and have obtained a non-Gaussian

velocity distribution. This velocity distribution shows a
power law and is apparently different from the results ob-
V1. CONCLUSIONS AND DISCUSSIONS tained in this paper. We believe that this discrepancy origi-

We have studied the velocity distribution function of self- Nates from the difference of the boundary conditions. In the
gravitating system$SGS which experienced violent gravi- Self-gravitating ring model, the configuration space is com-
tational processes by use Nfbody simulation method. Es- Pact. On the other hand, in the present simulation, the con-
pecially we have chosen two fundamental processes whicfguration space is open. We would like to extensively con-
mimic the galaxy formation dynamics; the spherical coldsider the effect of boundary conditions soon. .
collapse and the cluster-pair collision. In this work, we restricted our models only to the spheri-

In both cases, after the collapses or the collisions, all th&al collapses and the cluster-pair collisions. However actual
bound particles form a single stationary state, which ar@alaxies may undergo much more diverse evolution pro-
characterized by the local virial relation and the linearity inCesses including chemical evolution, the environment effects,
the mass-temperature relation. In this stationary state, th@nd a possible special nature of the cold dark matter. So the
velocity distribution is well described byhe democratic ~actual observational possibility of the universality we found
(=equally weighted) superposition of Gaussian distributionsfor astronomical objects should be further investigated.
of various temperatures (DT distributian)

This DT velocity distribution is robust against various ini-
tial conditions such as the change of the particle number, the ACKNOWLEDGMENTS
virial ratio, and the density profile. Moreover, using the half-
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